Integral Operator Spectral Computations using PETSc/SLEPc libraries

Paulo B. Vasconcelos

Universidade do Porto, Portugal

Jose E. Roman

Universidad Politécnica de Valencia, Spain

Filomena Dias d'Almeida

Universidade do Porto, Portugal

Outline

- The Integral Problem
- Approximation and Discretization
- Iterative Refimement
- Multipower Double Iteration
- Implementation Using PETSc and SLEPc.
- Numerical tests
- Conclusions

Use of Parallel Libraries

- Illustrate
 - Advantages of parallel libraries
 - to support programming mathematical models
- Model
 - Integral operator on a very large interval
 - Radiative transfer in stellar atmospheres
 - $^{\circ}$ Spectral computations \leftrightarrow eigenvalues of matrix discretizations

The Integral Problem

- Radiative transfer in stellar atmospheres Tx x = f,
- $T: X \to X$, where $X = L^1([0, t^*])$

$$(Tx)(t) = \frac{\varpi}{2} \int_0^{t^\star} \left(\int_1^\infty \frac{\exp(-|t-t'|\mu)}{\mu} d\mu \right) x(t') dt', \quad t \in [0, t^\star].$$

- t^* is the optical depth of the stellar atmosphere
- $\varpi \in \left]0,1\right[$ is the albedo
- T has a singularity at the origin (t = 0).

Here we will compute the spectral elements (eigenvalues and eigenfunctions) of the operator T.

Approximation and Discretization

- Mathematical models for Scientific and Engineering problems need to be discretized for computational purposes into large dimensional matrices
- because either they do not have an analytic solution or it is too much complicated to deal with.
- The problem $T\varphi = \lambda \varphi$ defined in a infinite dimentional space X
- is approximated by $T_m \varphi_m = \lambda_m \varphi_m$ in X_m ,
- *m* large enough.

$$\tau_{m,0}$$
 $\tau_{m,1}$ $\tau_{m,i-1}$ $\tau_{m,i}$ $\tau_{m,m}$

aga (Portugal) May 24-27, 2010

Iterative Refimement

- To solve the approximating problem $T_m\varphi_m = \lambda_m\varphi_m$ in X_m .
- without solving $A_m x_m = \lambda_m x_m$,
- we use an iterative refinement strategy
- to improve the eigenvalues and vectors of a moderate size matrix A_n corresponding to a descretization in X_n , $n \ll m$.
- The refinement formula uses mainly matrix-vector multiplications with
- $A_m(m \times m)$ representing T in a very fine discretization space X_m .
- Large matrices are built and stored in a distributed manner among the processors,
- The iterative refinement provides accurate eigenpairs corresponding to a larger problem.

$$au_{n,0}$$
 $au_{n,1}$ $au_{n,i-1}$ $au_{n,i}$ $au_{n,n}$

- The existence of the operator T linking the subspaces X_m and X_n allows the derivation of formulae to extend or restrict vectors from one of the finite dimensional subspaces to the other.
- The extension procedure will be denoted by E and the restriction by R

Integral Operator Spectral Computations using PETSc/SLEPc libraries - p. 7/20

Initializations

- Given matrices A_n and A_m of dimensions n an m
- compute eigenpair of A_n (eigenvalue λ and eigenvector u) not necessarily the dominant, computed for instance Arnoldi's method
- The left eigenvector of A_n , say v, will be used as a normalization factor.

The procedure S returns y, given a vector w

• Solve the $(n+1) \times n$ linear system

$$\begin{cases} (A_n - \lambda I)t = Rw - (v^T R(w))u\\ v^T t = 0 \end{cases}$$

• compute the extension $y = E(A_n t)/\lambda$.

Multipower Double Iteration

Algorithm:

- 1. Compute the eigenpair of A_n to be refined: λ , u and the left eigenvector v.
- 2. Extend eigenvalue: x = E(u);
- 3. Compute the residual: $residual = norm(A_m x \lambda x)$
- 4. While *residual* less or equal a given tolerance
 - (a) for j=1,2,...,*itpower* i. $\mu = v^T R(A_m x)$ ii. $x = A_m x/\mu$

(b)
$$w = A_m x - \mu x$$

- (c) Update refined eigenvector: x = x S(w)
- (d) compute the new residual: $residual = norm(A_m x \lambda x)$

PETSc/SLEPc

PETSc: Portable, Extensible Toolkit for Scientific Computation SLEPc: Scalable Library for Eigenvalue Problem Computations

	PETSc									SLEPc					
Nonlinear Systems					Time Steppers						SVD Solvers				
Line Search	: Trust :h Region		Other	r	Euler	Backward Euler		Pseudo Time Step	Other	Cross Product	Cycl Mate	ic fix Land	zos 1	'hick Res Lanczos	
			Krylo	v Su	ibspac	e Meti	hods				Ei	igensol	vers		
GMRES	CG	CG CGS Bi-CGS		Stab	TFQM	R Rich:	rdson	Chebychev	Other	Krylov-Schur Ar		Arnoldi	Lancz	os Other	
			į	Pred	onditi	ioners					Spect	tral Tra	insfor	m	
Addite Schwa	ve rz	Block Jacobi		Jac	obi	ILU	ICC	LU	Other	Shift Shift-and-inv		nd-inver	t Cay	ley Fold	
			701	1	Matric	es									
Compress Sparse Ro		sed Block Com low Sparse I			ressed Block w Diagonal		Dense	Other							
						Inde	x Set	ts							
Vector			lr	Indices B		ock Indices		Stride	Other						

Libraries and the Algorithm

- Computation of initial approximations: eigenvalue and the corresponding right and left eigenvectors of matrix A_n
 - carried out only once with SLEPc, for instance with Arnoldi eigensolver
- Matrix-vector products with matrices A_n and A_m (also used in the restriction and extension from one grid to the other),
 - computed in a distributed way, are performed in PETSc with MatMult operation ;
 - (all matrices are sparse and distributed)

Libraries and the Algorithm (cont)

- Vector operations, inner product, norm, addition and scaling,
 - are performed with the VecNorm, VecAXPY and VecScale routines from PETSc.
- Solution of linear systems (involved in procedure *S*)
 - $^{\circ}\,$ are also carried out in PETSc.
 - Either by an LU decomposition of dimension $(n + 1) \times n$ with partial pivoting.

(This requires a modification of the corresponding routine in PETSC).

or by an iterative solver.

Libraries and the Algorithm (cont)

- Iterative solver. We use GMRES applied to $A_n - \lambda_n I$.
 - In order to get t satisfying v^Tt = 0, we apply I uv^T to all Krylov vectors built by GMRES.
 (An implementation of the above scheme requires a modification of GMRES)
 - $(A_n \lambda I)q$, the candidate vector to be added to the basis, is pre-multiplied by the projector $I uv^T$.
 - Instead of $I uv^T$, we consider the projector $I vv^T$, since it can be implemented very easily in PETSc with function KSPSetNullSpace and it also guarantees $v^T t = 0$.
- PETSc provides many other iterative linear solvers and some preconditioners to improve the convergence .

Computer System Used

Odin cluster, located at Universidad Politécnica de Valencia.

- 55 dual-processor nodes
- 2.8 GHz Pentium Xeon processors, 1 GB of memory per node.
- interconnected with a high-speed SCI network with 2-D torus topology
- only one processor per node was used in the tests.

Numerical Tests

Performance analysis of the algorithm.

Several tests varying the number of processors and the algorithmic choices:

- influence of parameter *itpower* (number of power iterations inside the refinement formula)
- influence of the dimension of initial problem
- effect of different preconditioners.

Speedup with different values of itpower

Times for a refined solution m = 64000, with several values of n

Integral Operator Spectral Computations using PETSc/SLEPc libraries - p. 17/20

Several preconditioners to accelerate GMRES

Integral Operator Spectral Computations using PETSc/SLEPc libraries - p. 18/20

Conclusions

- We presented a parallel code for the Multipower Defect Correction Method
 - refines eigenvalues/eigenfunctions from rough approximations
 - is effective for the computation of specific eigenvalues
- An implementation using libraries PETSc/SLEPc
 - shows good behaviour on a distributed parallel environment

References

- M. Ahues, F. D. d'Almeida, A. Largillier, P. B. Vasconcelos, "Defect correction for spectral computations for a singular integral operator", *Communications on Pure and Applied Analysis* 5(2) pp. 241–250 (2006).
- [2] F. D. d'Almeida and P. B. Vasconcelos, "Spectral Computations: from Operators to Matrices", Proc. Appl. Math. Mech. 7 1022801–1022802 (2008).
- S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, B. F. Smith, H. Zhang. "PETSc users manual", Tech. Rep. ANL-95/11 Revision 2.3.3, Argonne National Laboratory (2007).
- [4] V. Hernandez, J. E. Roman, V. Vidal. "SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems", ACM Transactions on Mathematical Software 31 (3) pp.351–362 (2005).
- [5] V. Hernandez, J. E. Roman, A. Tomas, V. Vidal, "SLEPc users manual", Tech. Rep, DSIC-II/24/02 - Revision 2.3.3", D. Sistemas Informáticos y Computación, Universidad Politécnica de Valencia (2007).

