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Use of Parallel Libraries

• Illustrate
◦ Advantages of parallel libraries
◦ to support programming mathematical models

• Model
◦ Integral operator on a very large interval
◦ Radiative transfer in stellar atmospheres
◦ Spectral computations ↔ eigenvalues of matrix discretizations
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The Integral Problem

• Radiative transfer in stellar atmospheres Tx − x = f ,

• T : X → X , where X = L1 ([0, t⋆])

(Tx)(t) =
̟

2

∫

t
⋆

0

(
∫

∞

1

exp(−|t − t′|µ)

µ
dµ

)

x(t′)dt′, t ∈ [0, t⋆].

• t⋆ is the optical depth of the stellar atmosphere
• ̟ ∈ ]0, 1[ is the albedo

• T has a singularity at the origin (t = 0).

Here we will compute the spectral elements (eigenvalues and
eigenfunctions) of the operator T .
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Approximation and Discretization

• Mathematical models for Scientific and Engineering problems
need to be discretized for computational purposes into large
dimensional matrices

• because either they do not have an analytic solution or it is too
much complicated to deal with.

• The problem Tϕ = λϕ defined in a infinite dimentional space X

• is approximated by Tmϕm = λmϕm in Xm,
• m large enough.
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Iterative Refimement

• To solve the approximating problem Tmϕm = λmϕm in Xm.
• without solving Amxm = λmxm,
• we use an iterative refinement strategy
• to improve the eigenvalues and vectors of a moderate size matrix

An corresponding to a descretization in Xn, n << m.
• The refinement formula uses mainly matrix-vector multiplications

with
• Am(m×m) representing T in a very fine discretization space Xm.
• Large matrices are built and stored in a distributed manner among

the processors,
• The iterative refinement provides accurate eigenpairs

corresponding to a larger problem.
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• The existence of the operator T linking the subspaces Xm and Xn

allows the derivation of formulae to extend or restrict vectors from
one of the finite dimensional subspaces to the other.

• The extension procedure will be denoted by E and the restriction
by R
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Initializations

• Given matrices An and Am of dimensions n an m

• compute eigenpair of An (eigenvalue λ and eigenvector u) not
necessarily the dominant, computed for instance Arnoldi’s method

• The left eigenvector of An, say v, will be used as a normalization
factor.

The procedure S returns y, given a vector w

• Solve the (n + 1) × n linear system

{

(An − λI)t = Rw − (vT R(w))u

vT t = 0

• compute the extension y = E(Ant)/λ.
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Multipower Double Iteration

Algorithm:

1. Compute the eigenpair of An to be refined: λ, u
and the left eigenvector v.

2. Extend eigenvalue: x = E(u);

3. Compute the residual: residual = norm(Amx − λx)

4. While residual less or equal a given tolerance
(a) for j=1,2,. . . ,itpower

i. µ = vT R(Amx)
ii. x = Amx/µ

(b) w = Amx − µx

(c) Update refined eigenvector: x = x − S(w)

(d) compute the new residual: residual = norm(Amx − λx)
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PETSc/SLEPc
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Libraries and the Algorithm

• Computation of initial approximations: eigenvalue and the
corresponding right and left eigenvectors of matrix An

◦ carried out only once with SLEPc, for instance with Arnoldi
eigensolver

• Matrix-vector products with matrices An and Am

(also used in the restriction and extension from one grid to the
other),

◦ computed in a distributed way, are performed in PETSc with
MatMult operation ;
(all matrices are sparse and distributed)
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Libraries and the Algorithm (cont)

• Vector operations,
inner product, norm, addition and scaling,
◦ are performed with the VecNorm, VecAXPY and VecScale

routines from PETSc.
• Solution of linear systems (involved in procedure S)

◦ are also carried out in PETSc.
◦ Either by an LU decomposition of dimension (n + 1) × n with

partial pivoting.
(This requires a modification of the corresponding routine in
PETSC).

◦ or by an iterative solver.
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Libraries and the Algorithm (cont)

• Iterative solver.
We use GMRES applied to An − λnI.

◦ In order to get t satisfying vT t = 0, we apply I − uvT to all
Krylov vectors built by GMRES.
(An implementation of the above scheme requires a
modification of GMRES)
• (An − λI)q, the candidate vector to be added to the basis,

is pre-multiplied by the projector I − uvT .
• Instead of I − uvT , we consider the projector I − vvT , since

it can be implemented very easily in PETSc with function
KSPSetNullSpace and it also guarantees vT t = 0.

• PETSc provides many other iterative linear solvers and some
preconditioners to improve the convergence .
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Computer System Used

Odin cluster, located at Universidad Politécnica de Valencia.
• 55 dual-processor nodes
• 2.8 GHz Pentium Xeon processors , 1 GB of memory per node.
• interconnected with a high-speed SCI network with 2-D torus

topology
• only one processor per node was used in the tests.
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Numerical Tests

Performance analysis of the algorithm.

Several tests varying the number of processors and the algorithmic
choices:

• influence of parameter itpower (number of power iterations inside
the refinement formula)

• influence of the dimension of initial problem
• effect of different preconditioners.

A tolerance of 10−12 on the residual
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Speedup with different values of itpower
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Times for a refined solution m = 64000, with several values of n
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Several preconditioners to accelerate GMRES
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Conclusions

• We presented a parallel code for the Multipower Defect Correction
Method

◦ refines eigenvalues/eigenfunctions from rough approximations
◦ is effective for the computation of specific eigenvalues

• An implementation using libraries PETSc/SLEPc

◦ shows good behaviour on a distributed parallel environment
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